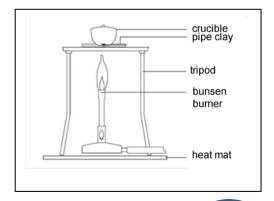
Empirical formula test Year 11 Chemistry

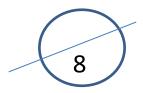

31

Name

- 1) Three unidentified compounds are found to have the empirical formula CH₂O. What is needed to identify the compound?
 - a) The mass of the compound.
 - b) The volume one mol of the substance occupies in cm³.
 - c) The percentage composition by mass of the compound.
 - d) The molar mass of the compound.
- 2) Styrene has the empirical formula CH and a molar mass of 104g/mol. What is the molecular formula of styrene?
 - a) C_2H_2
 - b) CH
 - c) C₈H₈
 - d) C₅H₅
- 3) What is the empirical formula of a compound containing 60.0% sulphur, 40.0% oxygen by mass?
 - a) SO₃
 - b) SO₄
 - c) S₂O₃
 - d) S₃O₄
- 4) A compound is found to have the molecular formula CH₅N. It 's mass composition is most likely:
 - a) 16.2% carbon, 38.8% hydrogen and 45.1% nitrogen
 - b) 38.8% carbon, 16.2% hydrogen and 45.1% nitrogen
 - c) 39.0% carbon, 12.0% hydrogen and 49.0% nitrogen
 - d) 49.0% carbon, 12.0% hydrogen and 39.0% nitrogen
- 5) Hydrated copper sulphate has the formulaCuSO₄.xH₂O. A student used the setup shown below to evaluate x in the formula. A student placed 10.0 grams of hydrated copper

sulphate into the crucible and strongly heated the sample. For most accurate results the student should: a) heat the sample until it visibly looks free of all water.

- b) use 20.0 grams of hydrated copper sulphate.
- c) not heat the sample with a strong flame.
- d) allow the sample to cool overnight and then weigh it.


5

- A sample of the solvent used in an expensive brand of perfume contained 0.60 g of carbon,
 0.15 g of hydrogen and 0.40 g of oxygen. Which comment is true about the molecular formula of the compound?
 - a) Each molecule of the compound has three time as many carbon atoms as oxygen atoms.
 - b) Each molecule of the compound has three times as many oxygen atoms as carbon atoms.
 - c) Each molecule of the compound has three time as many hydrogen atoms as oxygen atoms.
 - d) Each molecule of the compound has twice as many carbon atoms as oxygen atoms.
- 7) A 1.34 gram sample of an organic compound contained 0.36 grams of carbon. Which comment is true?
 - a) The sample contained 0.36 mol of carbon atoms
 - b) The sample contained 1.9 X 10²² carbon atoms
 - c) The sample contained 36.0 % by mass carbon.
 - d) The sample contained 64.0 % by mass carbon
- 8) A 100.0 g sample of pure CuSO₄.5H₂O (molar mass 250 amu) contains:
 - a) 36.0 grams of water
 - b) 90.0 grams of water
 - c) 64.0 grams of copper
 - d) both options a) and b).
- 9) A 25.0 grams sample of MgSO₄ contains:
 a) 20.2% Mg, 53.2% O and 26.6% S by mass.
 b) 2.34 X 10²³ atoms of Mg
 c) 13.2 grams of Mg
 - d) 2.42 X 10²⁴ atoms of oxygen.
- 10) An unknown molecular compound was analysed and its empirical formula identified. 36.4 grams of this pure compound contained 1.2 X 10²³ molecules. Which of the following can be evaluated from this information?
 - i. The empirical formula
 - ii. The molar mass of the compound.
 - iii. The molecular formula of the compound.
 - a) i. and ii. only
 - b) ii. and iii. Only
 - c) i. ii. and iii.
 - d) ii. only

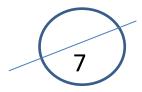
- 1) You can find the empirical formula of a compound using percentage composition data. Below are six steps, not all are required to find the empirical formula of a compound.
 - 1. Assume you have 100 g of the compound
 - 2. Convert the grams to moles for each element.
 - 3. Consider the percentages you are given as being in units of grams.
 - 4. Find the smallest whole number ratio of moles for each element.
 - 5. Use step 3. to find the total mass of the compound.
 - 6. Find the percentage composition of the compound.
 - a) Place the necessary steps, shown above, in the right order to determine the empirical formula of a compound. 6, 1, 3, 4 *1 mark*b) Which step is not necessary for the calculation of the empirical formula of the compound? 5 *1 mark*c) Which step must be experimentally determined? 6 *1 mark*d) Which step provides the greatest opportunity for error. 6 The step that involves measuring masses using scales with systematic error. (+/- 0.005g) *1 mark*
 - A compound is found to contain 23.3% magnesium, 30.7% sulfur and 46.0% oxygen. What is the empirical formula of this compound? Show all working out in the space provided below.
 - Consequential marks should be given at every step after an error.

1 mark
1 mark
1 mark
1 mark

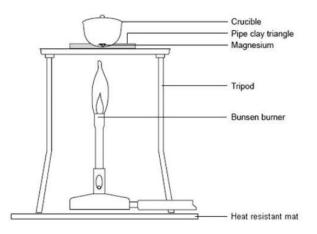
4 marks

3) A 1.50 g sample of hydrocarbon undergoes complete combustion to produce 4.50 g of CO_2 and 2.46 g of H_2O .

a) Find its empirical formula. Show all working out in the space provided below.


• Consequential marks should be given at every step after an error.			
Find the mol of C in 4.50 g of CO_2			
=> 4.50 / 44.0 = 0.102 mol	1 mark		
Find mol of H in 2.46g of H_2O			
=> 2.46 / 18.00 = 0.137g			
=> 0.137 X 2 = 0.274 mol of H	1 mark		
Students may have also used percentage composition to find the mass of carbon and			
hydrogen and then converted to mols.			
Simplest ratio			
=> 0.102 / 0.102 : 0.274/0.102			
=> 1.00 : 2.66	1 mark		
Multiply by 3 to get rid of fractions			
=> 3.0:8.0	1 mark		
Empirical formula C ₃ H ₈	1 mark		

5 marks


b) What is the molecular formula of the compound if its molar mass is 44.0 g/mol? Show all working out in the space provided below.

Molecular mass / Empirical mass = 44.0 / 44.0 = 1	1mark
Molecular formula is the same as the empirical formula C_3H_8	1 mark

2 marks

4) When exposed to the atmosphere, MgSO₄ bonds with water molecules in the air. This behaviour can be shown as MgSO₄•xH₂O where x is some integer quantity of water molecules. A student used the setup below to find the value of x.

The student strongly heated a 7.00 g sample of		Ϊ
$MgSO_4.xH_2O$ and recorded the mass of the sample		10
every two minutes to constant mass. The results were	2	9
plotted on the set of axes shown on the right.		8
a) Calculate the mol MgSO4		7
Show all working out		6
Find the mass of MgSO ₄ from the graph = $4.375g$	1 mark	5 4.375
=> mol of MgSO ₄ = 4.375/120.4 = 0.0363	1 mark	4.373
		3.
		2.
	2 marks	1.
b) Calculate the mol of water present. Show all working out.		min ¹ 2 3 4 5 6 7 8 9 10 *
Find the mass of water 7.00 – 4.375 = 2.63g	1 mark	

1 mark

c) Calculate the value of x. MgSO₄ : H₂O = >0.0363 : 0.146 1 mark Find the simplest ratio 0.0363/0.0363 : 0.146 / 0.0363 = 1 : 4 (MgSO₄.4H₂O) 1 mark

=> mol of water = 2.63 / 18.0 = 0.146

2 marks